Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Sci Total Environ ; 887: 164164, 2023 Aug 20.
Article in English | MEDLINE | ID: covidwho-2315235

ABSTRACT

During the COVID-19 pandemic, people used personal protective equipment (PPE) to lessen the spread of the virus. The release of microplastics (MPs) from discarded PPE is a new threat to the long-term health of the environment and poses challenges that are not yet clear. PPE-derived MPs have been found in multi-environmental compartments, e.g., water, sediments, air, and soil across the Bay of Bengal (BoB). As COVID-19 spreads, healthcare facilities use more plastic PPE, polluting aquatic ecosystems. Excessive PPE use releases MPs into the ecosystem, which aquatic organisms ingest, distressing the food chain and possibly causing ongoing health problems in humans. Thus, post-COVID-19 sustainability depends on proper intervention strategies for PPE waste, which have received scholarly interest. Although many studies have investigated PPE-induced MPs pollution in the BoB countries (e.g., India, Bangladesh, Sri Lanka, and Myanmar), the ecotoxicity impacts, intervention strategies, and future challenges of PPE-derived waste have largely gone unnoticed. Our study presents a critical literature review covering the ecotoxicity impacts, intervention strategies, and future challenges across the BoB countries (e.g., India (162,034.45 tons), Bangladesh (67,996 tons), Sri Lanka (35,707.95 tons), and Myanmar (22,593.5 tons). The ecotoxicity impacts of PPE-derived MPs on human health and other environmental compartments are critically addressed. The review's findings infer a gap in the 5R (Reduce, Reuse, Recycle, Redesign, and Restructure) Strategy's implementation in the BoB coastal regions, hindering the achievement of UN SDG-12. Despite widespread research advancements in the BoB, many questions about PPE-derived MPs pollution from the perspective of the COVID-19 era still need to be answered. In response to the post-COVID-19 environmental remediation concerns, this study highlights the present research gaps and suggests new research directions considering the current MPs' research advancements on COVID-related PPE waste. Finally, the review suggests a framework for proper intervention strategies for reducing and monitoring PPE-derived MPs pollution in the BoB countries.


Subject(s)
COVID-19 , Humans , Ecotoxicology , Ecosystem , Plastics/toxicity , Pandemics , Microplastics , Personal Protective Equipment
2.
Sci Total Environ ; 882: 163617, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-2294025

ABSTRACT

The COVID-19 pandemic has caused unprecedented negative impacts in the modern era, including economic, social, and public health losses. On the other hand, the potential effects that the input of SARS-CoV-2 in the aquatic environment from sewage may represent on non-target organisms are not well known. In addition, it is not yet known whether the association of SARS-CoV-2 with other pollutants, such as microplastics (MPs), may further impact the aquatic biota. Thus, we aimed to evaluate the possible ecotoxicological effects of exposure of male adults Poecilia reticulata, for 15 days, to inactivated SARS-CoV-2 (0.742 pg/L; isolated SARS.CoV2/SP02.2020.HIAE.Br) and polyethylene MP (PE MPs) (7.1 × 104 particles/L), alone and in combination, from multiple biomarkers. Our data suggest that exposure to SARS-CoV-2 induced behavioral changes (in the open field test), nephrotoxic effect (inferred by the increase in creatinine), hepatotoxic effect (inferred by the increase in bilirubin production), imbalance in the homeostasis of Fe, Ca, and Mg, as well as an anticholinesterase effect in the animals [marked by the reduction of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity]. On the other hand, exposure to PE MPs induced a genotoxic effect (assessed by the comet assay), as well as an increase in enzyme activity alpha-amylase, alkaline phosphatase, and carboxylesterases. However, we did not show synergistic, antagonistic, or additive effects caused by the combined exposure of P. reticulata to SARS-CoV-2 and PE MPs. Principal component analysis (PCA) and values from the "Integrated Biomarker Response" index indicate that exposure to SARS-CoV-2 was determinant for a more prominent effect in the evaluated animals. Therefore, our study sheds light on the ecotoxicity of the new coronavirus in non-target organisms and ratifies the need for more attention to the impacts of COVID-19 on aquatic biota.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Male , Humans , Microplastics/toxicity , Polyethylene/toxicity , Plastics/toxicity , SARS-CoV-2 , Acetylcholinesterase , Pandemics , Butyrylcholinesterase , Fishes , Biomarkers , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 870: 161949, 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2221343

ABSTRACT

Plastic microfibers (PMFs) are emerging pollutants widely distributed in the environment. In the early 2020s, the need for personal protection due to the COVID-19 pandemic led to increased consumption of plastic materials (e.g., facemasks and gloves) and ultimately to increased plastic pollution, especially by PMFs. The PMFs present in the environment may be released in this form (primary particles) or in larger materials, that will release them as a result of environmental conditions. Although a considerable number of studies have been addressing the effects of microplastics, most of them studied round particles, with fewer studies focusing on PMFs. Thus, the current study aimed to summarize and critically discuss the available data concerning the ecotoxicological impact of PMFs on aquatic organisms. Aquatic organisms exposed to PMFs showed accumulation, mainly in the digestive tract, and several toxic effects, such as DNA damage, physiological alterations, digestive damage and even mortality, suggesting that PMFs can pose a risk for the health of aquatic organisms. The PMFs induced toxicity to aquatic invertebrate and vertebrate organisms depends on size, shape, chemical association and composition of fibers. Regarding other size range (nm) of plastic fibers, the literature review highlighted a knowledge gap in terms of the effects of plastic nanofibers on aquatic organisms. There is a knowledge gap in terms of the interaction and modes of action of PMFs associated with other pollutants. In addition, studies addressing effects at different trophic levels as well as the use of other biological models should be considered. Overall, research gaps and recommendations for future research and trends considering the environmental impact of the COVID-19 pandemic are presented.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Plastics/toxicity , Aquatic Organisms , Pandemics , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , COVID-19/epidemiology , Risk Factors , Environmental Monitoring , Bibliometrics
4.
Nutrients ; 15(3)2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2216673

ABSTRACT

Microplastics are small plastic particles that come from the degradation of plastics, ubiquitous in nature and therefore affect both wildlife and humans. They have been detected in many marine species, but also in drinking water and in numerous foods, such as salt, honey and marine organisms. Exposure to microplastics can also occur through inhaled air. Data from animal studies have shown that once absorbed, plastic micro- and nanoparticles can distribute to the liver, spleen, heart, lungs, thymus, reproductive organs, kidneys and even the brain (crosses the blood-brain barrier). In addition, microplastics are transport operators of persistent organic pollutants or heavy metals from invertebrate organisms to other higher trophic levels. After ingestion, the additives and monomers in their composition can interfere with important biological processes in the human body and can cause disruption of the endocrine, immune system; can have a negative impact on mobility, reproduction and development; and can cause carcinogenesis. The pandemic caused by COVID-19 has affected not only human health and national economies but also the environment, due to the large volume of waste in the form of discarded personal protective equipment. The remarkable increase in global use of face masks, which mainly contain polypropylene, and poor waste management have led to worsening microplastic pollution, and the long-term consequences can be extremely devastating if urgent action is not taken.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Humans , Microplastics/toxicity , Plastics/toxicity , Water Pollutants, Chemical/analysis , COVID-19/epidemiology , COVID-19/prevention & control , Aquatic Organisms
5.
Environ Res ; 216(Pt 1): 114438, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2095320

ABSTRACT

COVID-19 pandemic has led to the generation of massive plastic wastes, comprising of onetime useable gloves, masks, tissues, and other personal protective equipment (PPE). Recommendations for the employ of single-use disposable masks made up of various polymeric materials like polyethylene, polyurethane, polyacrylonitrile, and polypropylene, polystyrene, can have significant aftermath on environmental, human as well as animal health. Improper disposal and handling of healthcare wastes and lack of proper management practices are creating serious health hazards and an extra challenge for the local authorities designated for management of solid waste. Most of the COVID-19 medical wastes generated are now being treated by incineration which generates microplastic particles (MPs), dioxin, furans, and various toxic metals, such as cadmium and lead. Moreover, natural degradation and mechanical abrasion of these wastes can lead to the generation of MPs which cause a serious health risk to living beings. It is a major threat to aquatic lives and gets into foods subsequently jeopardizing global food safety. Moreover, the presence of plastic is also considered a threat owing to the increased carbon emission and poses a profound danger to the global food chain. Degradation of MPs by axenic and mixed culture microorganisms, such as bacteria, fungi, microalgae etc. can be considered an eco-sustainable technique for the mitigation of the microplastic menace. This review primarily deals with the increase in microplastic pollution due to increased use of PPE along with different disinfection methods using chemicals, steam, microwave, autoclave, and incineration which are presently being employed for the treatment of COVID-19 pandemic-related wastes. The biological treatment of the MPs by diverse groups of fungi and bacteria can be an alternative option for the mitigation of microplastic wastes generated from COVID-19 healthcare waste.


Subject(s)
COVID-19 , Microplastics , Animals , Humans , Plastics/toxicity , COVID-19/prevention & control , Pandemics , Delivery of Health Care
6.
Environ Res ; 216(Pt 1): 114434, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2061124

ABSTRACT

The COVID-19 pandemic led to the explosion of biomedical waste, a global challenge to public health and the environment. Biomedical waste comprising plastic can convert into microplastics (MPs, < 5 mm) by sunlight, wave, oxidative and thermal processes, and biodegradation. MPs with additives and contaminants such as metals are also hazardous to many aquatic and terrestrial organisms, including humans. Bioaccumulation of MPs in organisms often transfers across the trophic level in the global food web. Thus, this article aims to provide a literature review on the source, quantity, and fate of biomedical waste, along with the recent surge of MPs and their adverse impact on aquatic and terrestrial organisms. MPs intake (ingestion, inhalation, and dermal contact) in humans causing various chronic diseases involving multiple organs in digestive, respiratory, and reproductive systems are surveyed, which have been reviewed barely. There is an urgent need to control and manage biomedical waste to shrink MPs pollution for reducing environmental and human health risks.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics/toxicity , Plastics/toxicity , COVID-19/epidemiology , Pandemics , Environmental Monitoring , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Biomarkers
7.
Environ Pollut ; 313: 120166, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2031270

ABSTRACT

The rapid growth of plastic wastes exceeds efforts to eliminate plastic pollution owing to the outbreak of COVID-19 in 2020 and then aggravates inherent environmental threats to the ecosystem. The paper provided a short introduction relating to the hazards of plastic wastes on environment and a detailed statement about plastic toxicity on human. The article stated on plastic how to enter the body and cause harm for us step by step. Given the toxicity and harm of plastic wastes on human, the degradation of plastic wastes via the physical, chemical and biotic methodologies is looked back. The advanced physical techniques are introduced briefly at firstly. Additionally, evaluate on chemical method for plastic decomposition and review on biotic degradation of plastic. The reactive oxygen species and the enzymes play a crucial role in chemical and biotic degradation processes, respectively. The reactive oxygen species are derived from the activated state of oxides, and the enzymes that aid the microorganism to ingest plastic through its metabolic mechanism are secreted by the microorganism. Subsequently, the potential possibility of upcycling plastic is analyzed from two aspects of the technology and application. The innovative technology utilizes sunlight as driver-power of plastic upcycling. And the carbon capture, utilization and sequestration and the growth substrate provided the novel guided directions for plastic recycle. Lastly, the three suggestions on plastic waste management are expected to establish an economy and efficient plastic sorting system, and two engineering solutions on plastic recycle are to make a contribution for sustainable upcycling of plastic.


Subject(s)
COVID-19 , Plastics , Carbon , Ecosystem , Humans , Oxides , Plastics/toxicity , Reactive Oxygen Species , Technology
8.
J Hazard Mater ; 435: 128980, 2022 08 05.
Article in English | MEDLINE | ID: covidwho-1796501

ABSTRACT

The ingestion and accumulation of microplastics is a serious threat to the health and survival of humans and other organisms given the increasing use of daily-use plastic products, especially during the COVID-19 pandemic. However, whether direct microplastic contamination from plastic packaging is a threat to human health remains unclear. We analyzed the market demand for plastic packaging in Asia-Pacific, North America, and Europe and identified the commonly used plastic food packaging products. We found that food containers exposed to high-temperature released more than 10 million microplastics per mL in water. Recycled plastic food packaging was demonstrated to continuously leach micro- and nanoplastics. In vitro cell engulfing experiments revealed that both micro- and nanoplastic leachates are readily taken up by murine macrophages without any preconditioning, and that short-term microplastic exposure may induce inflammation while exposure to nanoplastic substantially suppressed the lysosomal activities of macrophages. We demonstrated that the ingestion of micro- and nanoplastics released from food containers can exert differential negative effects on macrophage activities, proving that the explosive growth in the use of plastic packaging can poses significant health risks to consumers.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Food Packaging , Humans , Lysosomes , Macrophages , Mice , Microplastics/toxicity , Pandemics , Plastics/analysis , Plastics/toxicity , Water Pollutants, Chemical/analysis
9.
Chemosphere ; 299: 134373, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1748141

ABSTRACT

The ongoing COVID-19 pandemic is leading to an increase of the global production of plastics since the use of personal protective equipment (PPEs, i.e. gloves, gowns, masks, packaging items), has become mandatory to prevent the spread of the virus. Plastic breaks down into micro/nano particles due to physical or chemical or biological actions into environment. Due to small dimensions, ubiquitous and persistent nature, the plastic particles represent a significant threat to ecosystems and can entry into food chains. Among the plastic polymers used for PPEs, polystyrene is less studied regarding its eco-geno-toxicity. This study aims to investigate acute, chronic and subchronic effects of the microplastic polystyrene beads (PS-MP, size 1.0 µm) on three freshwater species, the alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the crustacean Ceriodaphnia dubia and the benthic ostracod Heterocypris incongruens. Furthermore, the potential genotoxicity and the ROS production due to the PS-MP were also determined in C. dubia. Results revealed that the acute effects occurred at concentrations of PS-MP in the order of dozens of mg/L in B. calyciflorus and C. dubia and hundreds of mg/L in H. incongruens. Regarding long-term toxicity, increasing chronic effects with EC50s in the order of units (C. dubia), hundreds (B. calyciflorus) and thousands (R. subcapitata) of µg/L were observed. Both for acute and chronic/sub chronic toxicity, daphnids were more sensitive to polystyrene than ostracods. Moreover, when C. dubia neonates were exposed to the PS-MP, alterations in genetic material as well as the production of ROS occurred, starting from concentrations in the order of units of µg/L, probably due to inflammatory responses. At last, the risk quotient (RQ) as a measure of risk posed by PS-MPs in freshwater environment, was calculated obtaining a value of 7.2, higher than the threshold value of 1.


Subject(s)
COVID-19 , Rotifera , Water Pollutants, Chemical , Animals , Aquatic Organisms , Ecosystem , Fresh Water , Humans , Infant, Newborn , Microplastics/toxicity , Pandemics , Plastics/toxicity , Polystyrenes/toxicity , Reactive Oxygen Species , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
10.
Chemosphere ; 289: 133132, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1540443

ABSTRACT

Global production of plastics remains at the high level despite the SARS-Cov-2 pandemic. These are primarily petroleum-derived plastics but the contribution of bio-based plastics estimated at the level of 1% in the plastic market in 2019 is expected to be increasing. Simultaneously, the significant part of plastic waste is still disposed improperly and pollutes the environment making a threat to all living organisms. In this work three plastic materials, two bio-based biodegradable: polylactide (PLA) and polyhydroxybutyrate (PHB), and one petroleum-derived non-biodegradable polypropylene (PP) were studied towards their effects on seed germination and early growth of higher plants. The following plants were used as bioindicators: monocotyledonous plant - Sorghum saccharatum and two dicotyledonous plants: Sinapsis alba and Lepidium sativum. Plastics did not affect seed germination of higher plants even at the highest concentration tested (11.9% w/w) but their presence in soil acted in various ways on growth of the plants. Either no or inhibitive or stimulation effects on growth of roots or stems were noticed. It depended on the concentration and chemical composition of the plastic tested, and plant species. PHB and PLA more often caused to the inhibition of root growth than PP did. This phenomenon was observed in particular with regard to the dicotyledonous plants. Moreover, in the tests with the dicotyledonous plants (S. alba and L. sativum) the dose-response relations were usually determined as statistically relevant. Among these plants cress (L. sativum) occurred to be more sensitive and allowed for obtaining the dose-response dependence for both root and stem length, and, what is important, it took place in the case of each of materials tested. Therefore, cress is recommended to be used as a bioindicator in the assessment of the effect of plastics (petroleum-derived and bio-based plastics) on the early stages of growth of higher plants.


Subject(s)
COVID-19 , Germination , Humans , Plastics/toxicity , SARS-CoV-2 , Seeds
11.
Sci Total Environ ; 779: 146433, 2021 Jul 20.
Article in English | MEDLINE | ID: covidwho-1379217

ABSTRACT

Microplastics (MPs) are widely distributed and extensively found within marine ecosystems, and approximately 8 million tons of plastics are being dumped into the sea annually. Once reached the marine environment, plastics tend to get fragmented into smaller particles through photo-degradation, mechanical and biological processes. These MPs have raised concerns globally due to their potential toxic impacts on a wide variety of aquatic fauna and humans. Ingested microplastics can cause severe health implications in fishes, including reduced feeding intensity, improper gill functioning, immuno-suppression, and compromised reproducibility. Several studies were also conducted to scrutinize MPs trophic transfer through the food chain from primary producers to top predators and their bioaccumulation. This paper briefly summarizes all the possible sources, routes, bioavailability, trophic transfer, and consequences of microplastics in fishes. The review article also intended to highlight various mitigation strategies like implementing Four R's concept (refuse, reduce, reuse, and recycle), integrated strategies, ban on single-use plastics, use bioplastics, and create behavioural changes with public awareness.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Fishes , Humans , Plastics/toxicity , Reproducibility of Results , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
12.
J Hazard Mater ; 422: 126945, 2022 01 15.
Article in English | MEDLINE | ID: covidwho-1364230

ABSTRACT

Since the emergence of Coronavirus disease (COVID-19), the threat of plastic waste pollution has grown exponentially, with a strong attention on the environmental and human health consequences of millions of personal protective equipment (PPE) (e.g., face masks, shields, gloves, and wipes) being used and discarded. In response, a massive research effort has been launched to understand, characterize, and estimate the exposure risks of PPE associated contaminants. While the number of studies examining the impacts of PPE is increasing, this review aimed to provide a quick update on the research conducted to date of this topic, as well as to identify priorities for future research. Specifically, we analyzed recent global peer-reviewed articles on PPE to synthesize methods, control measures, and documented evidence to (1) investigate the discarded PPE in a variety of environments; (2) determine the microplastics discharge in the aquatic environment; (3) examine the intentionally or unintentionally added chemicals in the production of PPE; and (4) assess potential human health hazards and exposure pathways. Despite progress, more research is needed in the future to fully understand the chemical emissions from PPE degradation mechanisms (mechanical, chemical, and biological), as well as the magnitude and density of PPE pollution in the environment.


Subject(s)
COVID-19 , Personal Protective Equipment , Humans , Microplastics , Plastics/toxicity , SARS-CoV-2
13.
Chemosphere ; 286(Pt 3): 131898, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1356165

ABSTRACT

Microplastics (MPs) are ubiquitous anthropogenic contaminants, and their abundance in the entire ecosystem raises the question of how far is the impact of these MPs on the biota, humans, and the environment. Recent research has overemphasized the occurrence, characterization, and direct toxicity of MPs; however, determining and understanding their genotoxic effect is still limited. Thus, the present review addresses the genotoxic potential of these emerging contaminants in aquatic organisms and in human peripheral lymphocytes and identified the research gaps in this area. Several genotoxic endpoints were implicated, including the frequency of micronuclei (MN), nucleoplasmic bridge (NPB), nuclear buds (NBUD), DNA strand breaks, and the percentage of DNA in the tail (%Tail DNA). In addition, the mechanism of MPs-induced genotoxicity seems to be closely associated with reactive oxygen species (ROS) production, inflammatory responses, and DNA repair interference. However, the gathered information urges the need for more studies that present environmentally relevant conditions. Taken into consideration, the lifestyle changes within the COVID-19 pandemic, we discussed the impact of the pandemic on enhancing the genotoxic potential of MPs whether through increasing human exposure to MPs via inappropriate disposal and overconsumption of plastic-based products or by disrupting the defense system owing to unhealthy food and sleep deprivation as well as stress. Overall, this review provided a reference for the genotoxic effect of MPs, their mechanism of action, as well as the contribution of COVID-19 to increase the genotoxic risk of MPs.


Subject(s)
COVID-19 , Water Pollutants, Chemical , DNA Damage , Ecosystem , Humans , Microplastics , Pandemics , Plastics/toxicity , SARS-CoV-2 , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL